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The Roby version of the NDDO MO method has been analysed by performing extensive calculations 
on several molecular systems employing a minimum basis set of STO-3G functions. The effect of using 
uniform scale factors and those derived from the S-expansion technique, for electron repulsion in- 
tegrals has also been studied. At the all-electron level, the method, with all its refinements, does not 
appear promising. The all-valence NDDO MO method after correction by S-expansion, however, 
yields results which are in good agreement with ab initio results. The performance of this scheme is 
comparable to that of the simplified ab initio method of Brown and Roby. 
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1. Introduction 

Of the several approximations studied to simplify the Roothaan procedure 
without compromising on its predictive power, the Zero Differential Over- 
lap (ZDO) approximation [1-3] has remained the focal point of interest for 
quite some time. Considerations of invariance under unitary transformations 
necessitate the application of the ZDO approximation in differing degrees of 
rigour to the different segments of the electron repulsion integral supermatrix. 
Thus a whole series of MO schemes, requiring varying magnitudes of computa- 
tional effort, have been generated [4, 5]. Of these, some of the simpler schemes, like 
the CNDO, have enjoyed widespread popularity and have been applied, quite 
successfully, considering the drastic nature of the approximations, to a variety of 
problems of chemical interest. These methods, however, perform poorly at the 
nonempirical level and require a rather heavy parameterization in order to give 
meaningful results. It is in fact a moot point whether the success or failure of these 
methods in certain problems are not the direct consequence of the parameterization 
scheme which is being employed. The problem of efficient parameterization be- 
comes particularly acute if extension of these methods to transition metal com- 
plexes is attempted. The NDDO MO scheme, coming as it does higher up on the 
scale of sophistication of the various ZDO methods, might perhaps be amenable 
to a fully nonempirical treatment which is capable of yielding results resembling 
those of the full ab initio calculations. 

The NDDO approximation has been subjected to considerable theoretical 
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analysis, but very few numerical calculations have been attempted. The initial 
parameterized versions were not much superior to the CNDO and INDO methods 
[6]. In a brilliant piece of analysis, Roby formulated a theoretically pleasing 
NDDO MO scheme which did not seriously jeopardize the simplicity of the 
Pople's scheme [7]. It was applied to the case of CO molecule [8] with satisfactory 
results, but with some scope for improvement, particularly in evolving a method 
for systematically scaling the electron repulsion integrals to nullify the error 
produced by the NDDO approximation. We decided to perform exhaustive cal- 
culations with this method to ascertain its capabilities and limitations and to 
probe the effects of the several refinements which have been suggested. Various 
quantities like total energy, orbital energies, Mulliken population, dipole moment, 
expectation value of other one-electron operators like 1/r etc. have all been used 
to judge the merits of the method. 

In the present work the degree of success one might hope to achieve from the 
several NDDO schemes has been described with illustrative examples. In the 
forthcoming series of papers the results obtained for numerous closed and open 
shell systems using the scheme which we consider to be the best will be presented. 

Section 2 describes the features common to all the calculations. The theoretical 
basis for the Roby scheme is briefly recapitulated in section 3. After discussing all 
the results the conclusions have been summarised. 

2. Common Features of the Calculations 

To provide a consistent interpretation for all the results, a minimum basis set 
of Slater type orbitals, expanded in terms of three Gaussians each by a variational 
fit [9], was employed in all the calculations. Clementi-Raimondi exponents [10] 
were used for the orbital exponents of atoms in the first row of the Periodic Table. 
The exponent for hydrogen was taken as 1.2. 

The reasons for using a Gaussian type orbital basis are multifarious. The first 
and the obvious one is that it considerably simplifies the integral evaluation in the 
MO calculations. In addition, we intend using the resultant wave functions for 
the evaluation of several second order properties. The integrals occurring in such 
computations can be evaluated to a high degree of accuracy with cdnsiderable ease 
using a GTO basis [11]. Also, comparison of results with ab initio will be on an 
equal footing since a large number of these calculations now employ the STO-3G 
basis. We firmly believe that none of the general conclusions we have arrived at 
need be altered if a minimum basis set of STO's is used instead of the one we have 
used. 

The molecules chosen for study are the first row hydrides, non-hydride mole- 
cules like 03, FNO etc., and organic molecules like ethane, glyoxal and butadiene. 
Experimental geometry was used when available and standard geometry [5] 
otherwise. 

All calculations were performed using an IBM 370/155 computer at liT/Madras. 
Some of the subroutines in the integral package of the IBMOL 5 program were 
used in the development of the computer programs for performing the MO 
calculations and subsequently calculating some one-electron properties. 
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3. The Roby Scheme 

The atomic orbital basis set {):} is transformed to the L6wdin symmetry 
orthogonalized (OAO) set {2} using the transformation [12], 

~ , : Z  S -  1/2 ( l )  

The secular equation to be solved over the {2} basis then becomes, 

F~CZ=CXE (2) 

F~ = HZ + G ~ (3) 

where H ~ and G a are the one- and two-electron parts of the Fock matrix F ;~. 

The MO coefficients C ~ and the Fock matrix F a may be expressed in terms of their 
nonorthogonal counterparts as 

F ~ = S -  1/2FS- 1/2 (4) 

C ~ = S1 / zC  (5) 

where S is the overlap matrix over the nonorthogonal basis. 
The evaluation of the one-electron part of the Fock matrix over the OAO 

basis does not pose any problem of particular severity because it is easily evaluated 
over the nonorthogonal basis and transformed. 

H . ~ = S - 1 / Z H S  1/2 (6) 

Calculation of the two-electron part of the matrix remains a difficult task 
even if the NDDO approximation over the OAO basis is made since the surviving 
integrals would still require the evaluation of many-centered integrals over the 
nonorthogonal basis. However, Roby [7] has effected a drastic simplification, 
which makes the scheme conveniently workable, by proving the following interesting 
theorem. 

The electron repulsion integral supermatrix over the OAO basis may be equated 
to that over the nonorthogonal basis in which the NDDO approximation has been 
made, provided the Ruedenberg expansion [-13] is sufficiently valid. In mathe- 
matical form, 

a ~ = GNDDO (7) 
2 2 2 2 

i.e. (#AVB[fCRD) : (IIAVA[aCpC)6ABOC. (7a)  

The Ruedenberg expansion is exact only when the atomic orbital subset on each 
constituent atom is orthonormal and complete. The truncated Ruedenberg 
expansion for a minimum basis set of atomic orbitals is obviously far from correct 
and it will be an objective of the present work to gauge the severity of the error 
produced. This original Roby scheme, without any refinements, will be referred 
to as scheme I hereafter in this paper. 

A pleasing feature of the Roby scheme is that the source of error may easily 
be pinpointed, that due to Eq.(7) being the only one, and hence the method may 
be subjected to systematic refinements. Two possible modes of improvement have 
been considered in this work. 
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In the first method the Coulomb repulsion integrals have been scaled by an 
amount determined quite empirically and which also covered the prescriptions 
of Cook et at. [14]. These uniform scaling studies have been described as scheme II 
in this paper. 

In scheme III scale factors for Coulomb repulsion integrals evaluated using 
the S-expansion technique, correct through second order in overlap, have been 
employed [4]. For one-center Coulomb repulsion integrals the corrections are 
given by: 

B 
.AA_ AA xE(S ) + - (8) ~#v --7## "~- E E 1 2 AB AA AB 2 AB AA A 

B#A 6 

The two-center Coulomb repulsion integrals after correction become: 

A B 
3~ AB AB + X "~ I [ ~ 2"~BA(~.AB AA }~6 =)~,u6 2.a 4 \  ~" JS"~, ",'/I'5 --~#v )-~- E 4~'j'JlI ~2"~AB{~'ABI#e \'/#a - -  ~6e j'BB'~ 

1, E 

C 
+ E E 1 2 BC ,AB AC 2 AC ,AB BC a[(S ),~,(?,,a - ?F,,,,) + (S),,o,(},,,~ - Taro)] (9) 

C~A,B co 

This scheme has been studied both at the all-electron level and the valence-only 
level. In one set of valence-only calculations the core-valence separation was 
carried out closely along the lines suggested by Lykos and Parr [15]. The total 
wave function is written in the form 

= s~(~~176 0~,b (10) 

where 0 ~176 and Ov,~ are antisymmetrized functions for the core and valence 
electrons respectively. ~4 is an antisymmetrisation operator which interchanges 
electrons between the core and the valence shell. The core orbitals are taken to be 
the original unpolarised atomic orbitals of the neutral atom. 

The expectation value of the electronic energy may be written as, 

Er =E~o~, + Eva I (11) 

where 

Here 

and 

o =fOooro o 6 . . . .  E~o~ JY'core dz 

E _ ~',l, val f v a l  @val d'c val - -  3"4" 

(12) 

(13) 

2(,,,1 (no + 1 .... n c + n,) = 
ttc + n~- 1 tic + n v t 

2 Yd .... (*0+a E 1 (t5) 
~ = n e + l  ~r # ,V=ne+l  FNv 

ne 

Xr ) = aT'N(#) + ~ [2f~(/~) --/s (16) 
j = l  

o (t,2...nc)= k '3C~( ~c)+l ~' 1 (14) 
~ 2 rrA 
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in which J~'N is the kinetic energy plus the nuclear attraction term, the remaining 
term representing the Coulomb and the exchange potentials from the core electrons. 

This procedure of  core-valence separation is justified only if all valence orbitals 
are kept orthogonal to all core orbitals. In the present set of  calculations the 2s 
orbital has been made orthogonal to the ls core on the same atom by the Schmidt 
procedure. The valence orbitals on any atom have not been orthogonalized to 
the core on another atom but the overlap is expected to be so small that for all 
intents and purposes they may be assumed to be so. 

The conventional and more convenient way of treating the core as a point 
charge collapsed at the nucleus has also been studied. 

4. Results and Discussion 

In the first calculation by Roby [8] on the CO molecule using scheme I, the 
total energy was quite close to the ab initio value and the orbital energies were 
reasonable although the core levels were far too deep. Atomic populations were 
not the same as in the ab initio calculations, the net charges on carbon and oxygen 
bearing the wrong signs. In spite of its far from impressive performance it was 

�9 thought worthwhile to carry out more calculations with this method because there 
was the hope that at least relative energies might be predicted correctly. The poor 
values for the core binding energies may perhaps be attributed to the use of Burns' 
exponents [16] which provide a fair representation of the valence region only. 
Clementi-Raimondi exponents, obtained by minimizing the energy and hence 
describing the core quite well, may be expected to give better core energies. 

In Table 1, the results obtained for the water molecule are given. The total 
energy is seen to be within 1% of the corresponding ab initio value but the orbital 

T a b l e  1. R e s u l t s  f o r  H 2 0  m o l e c u l e  

O r b i t a l  ab S A P  (1) a (2) b (3) c (4) d (5) ~ 

initio f 

l a  1 - 2 0 . 4 3 4  - 2 0 . 3 1 6  - 1 9 . 3 0 6  - 1 9 . 9 2 4  - -  - -  - -  

2a  1 - 1.306 1.276 - 1.765 - 1.238 - 1.331 - 1.197 - 2.294 

l b  2 - 0 .642 - 0.438 - 0 .426 - 0.403 - 0 .545 - 0 .556 - 0.492 

3a 1 - 0.478 - 0 .338 0 .176 - 0.175 - 0.298 0 .279 - 0.349 

l b  I - 0 .428 - 0 .306 0 .094 - 0.135 - 0 .292 - 0.301 - 0 .242 

ETota~ - - 7 5 . 2 2 6  - -75 .387  - -75 .375  - -74 .845  - - 7 5 . 0 8 2  15.864 - -18 .356  

P o p u l a t i o n  o n  

H y d r o g e n  0.80 - -  - -  0.51 0.73 0.84 0.70 

# ( D e b y e )  1.64 2.72 --  2.39 2.27 1.17 

(1 / r~ t  > 5.833 5 .766 - -  - -  5.761 5.771 5.837 

( z )  1.463 1.149 - -  1.262 1.311 1.745 

a A l l - e l e c t r o n  N D D O  ; n o  s c a l i n ~ S c h e m e  I. 

b A l l - e l e c t r o n  N D D O  + O A O  Sca l ing .  

c A l l - v a l e n c e  N D D O  + O A O  Sca l ing .  

a A l l - v a l e n c e  N D D O  w i t h  p o i n t  c h a r g e  core  + O A O  Sca l ing .  2s o r t h o g o n a l  to  ls .  

e A l l - v a l e n c e  N D D O  w i t h  p o i n t  c h a r g e  core  + O A O  Sca l ing .  2s n o t  o r t h o g o n a l  to  Is.  
f Ref .  [23] .  

g Ref .  [19] .  
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energies are hopelessly bad. Results for the other hydrides exhibit an identical 
trend. The expectation that relative energies might be predicted correctly so that 
the method would be of some value in conformational analysis, has not been 
fulfilled judging from a few representative results for ethane, glyoxal, butadiene 
and formamide. 

Results for the nonhydride molecule Oa are given in Table 2. The performance 
here is much better, the total energy and orbital energies being quite satisfactory. 
But the gross atomic population is predicted incorrectly. Charge distributions, in 
general, are poorly calculated by scheme I. So the use of the wave functions 
obtained by this method for the calculation of other molecular properties does 
not appear promising. 

It appears, therefore, that the error produced due to Eq.(7) in the case of 
minimum basis set calculations is too severe to permit a meaningful representation 
of molecular electronic structure. The hydrides yield the worst results since the 
truncated Ruedenberg expansion in terms of the single function on hydrogen is 
far from adequate in describing the orbitals on the heavy atoms. From the evidence 
gathered against it so far, it may be concluded that the original Roby scheme, 
without any refinements, has little to offer to merit further application and therefore 
may be abandoned. 

Table  2. Results  for 0 3 

Orbital  ab initio e S A I  ~ (1 )  ~ ( 2 )  b (3)  ~ (4 )  d 

l a  1 - -  2 0 . 9 6 0  - 2 0 . 7 7 9  - -  2 0 . 3 0 3  - -  2 0 . 5 6 5  

l b  1 - 2 0 . 6 7 7  - 2 0 . 6 3 0  - 2 0 . 1 7 8  - 2 0 . 4 8 0  

2 a  1 - 2 0 . 6 7 7  - 2 0 . 6 2 9  - 2 0 . 1 8 0  - 2 0 . 4 7 4  

3 a  1 - 1 . 6 8 8  - 1 . 4 5 4  1 . 7 3 9  - 1 . 3 6 1  

2 b  1 - 1 . 3 3 6  - 1 . 2 9 9  - 1 . 5 1 6  - 1 . 2 6 2  

4 a  I - 1 . 0 0 6  - 1 . 2 6 0  - 1 . 4 9 1  - 1 . 2 4 5  

5 a  1 - 0 . 7 1 2  - 0 . 6 0 8  - 0 . 6 0 0  - 0 . 6 0 0  

lb2 - 0 . 6 8 0  ~ 0 . 4 6 1  - 0 . 4 5 2  - 0 . 4 8 6  

3 b  1 - 0 . 6 7 3  - 0 . 7 0 2  - 0 . 6 6 4  - 0 . 6 3 6  

4 b  I - 0 . 4 4 1  - 0 . 4 6 9  - 0 . 4 1 8  - 0 . 4 7 3  

6 a  1 - 0 . 4 1 8  - 0 . 4 6 2  - 0 . 4 1 4  0 . 4 6 2  

l a  2 - 0 . 3 5 0  - 0 . 3 8 1  - 0 . 3 3 7  - 0 . 3 4 4  

ETota I - 2 2 3 . 4 8  - 2 2 3 . 9 3  - 2 2 2 . 2 3  - 2 2 2 . 3 3  

Charge  on  
Centra l  O x y g e n  + 0 . 1 4  - -  0 . 1 3  - 0 . 0 9  

# ( D e b y e )  - 0 . 4 7  0 . 4 3  - -  0 . 2 2  

( z )  2 0 . 4 3 2  2 0 . 0 7 4  - -  2 0 . 0 2 7  

(jT0_o) { 4 2 8 . 6 2 9  2 8 . 8 7 1  - -  2 8 . 6 8 4  
h 2 7 . 5 0 1  2 7 . 5 3 8  2 7 . 2 8 8  

--  1 . 5 7 4  --  1 . 4 6 4  

-- 1.301 - 1 . 1 2 6  

- 1 . 1 4 3  - 0 . 7 4 9  

- 0 . 6 9 8  - 0 . 6 7 6  

- 0 . 6 0 0  --  0 . 6 3 2  

--  0 . 7 1 5  --  0 . 6 1 1  

--  0 . 4 6 7  --  0 . 4 4 8  

--  0 . 4 3 2  --  0 . 3 9 5  

- 0 . 3 2 8  --  0 . 2 8 7  

- 2 2 2 . 4 3  - 4 4 . 0 4  

+ 0 . 0 2  + 0 . 0 5  

0 . 1 1  --  0 . 2 4  

2 0 . 2 0 2  2 0 . 3 4 1  

2 8 . 6 1 2  2 8 . 3 6 4  

2 7 . 3 7 9  2 7 . 2 7 9  

a A l l - e l e c t r o n  N D D O ;  no sca l ing-scheme I.  

b A l l - e l e c t r o n  N D D O  + O A O  scaling.  
c A l l - v a l e n c e  N D D O  + O A O  scaling.  
d Al l -va lence  N D D O  with  point  charge  core  + O A O  scaling.  
e R e f .  [ 2 4 ] .  

f R e f .  [ 2 0 ] .  

g Centra l  oxygen .  
h End oxygen .  



NDDO MO Calculations 249 

There are two avenues open for redeeming the Roby method. The error 
produced by the approximation in the electron repulsion part may somehow be 
corrected by making compensating errors in the one-electron part of the Fock 
Hamiltonian. The successful accomplishment of this type of cancellation of errors 
is indeed one of the reasons for the success of cruder MO methods, like the CNDO, 
which strike a delicate balance between the errors in the positive and the negative 
contributions of the energy functional. However, it has its pitfalls: the errors in 
the derivative of the functional with respect to certain parameters of interest 
need not parallel those of the functional itself and hence the gradient properties 
of the energy eigenfanction might be very poorly reproduced. It has been pointed 
out recently [17] that the failure of the Pople's CNDO method in predicting 
diagonal stretching force constants is a direct consequence of the fact that while 
compensating for some errors due to the nonorthogonality of the AO basis set, 
contributions vital to the gradient of the energy with respect to nuclear displace- 
ment are lost. Our aim is to develop a method possessing the utility which is 
commensurate with the effort expended on it and having none of the limitations 
of the CNDO type calculations. Clearly then, making compensating errors is not 
the preferable way of improving the performance of scheme I. 

The only alternative is to carefully compare the two sides of Eq.(7) and attempt 
to introduce corrections to make them equal. 

After comparing integrals over the OAO basis and the non-orthogonal basis 
in a number of cases Cook et  al. [14] have found that significant differences exist 
only in the case of Coulomb repulsion integrals. Based on this conclusion Roby 
suggested [8] that Eq.(7) could be rewritten as 

Gz= SCALE x GNDDO (17) 

where SCALE is a matrix of scale factors for Coulomb repulsion integrals. It 
was suggested that all one-center repulsion integrals be increased and two-center 
integrals be decreased by an amount anywhere between 9-14~. 

Roby found, for the CO molecule, that the uniform scaling had a pronounced 
effect on the charge distribution and the total energy. Our experience parallels 
this earlier study. For example by an appropriate scaling it was possible to reverse 
the net atomic charge on the atoms of 03, but this was at the expense of the total 
energy which became poor. A detailed study of the effect of uniform scaling was 
done on the series of homonuclear diatomics C2, N2, 02 (triplet, of course) and 
F z. Use of different scaling factors for one- and two-center Coulomb integals 
was also tried. The orbital energies and the total energy changed monotonically 
with the scaling in all the cases. Cases in which the ordering of levels was reversed 
remained uncorrected by this kind of scaling. In the case of glyoxal, the zc levels 
which had been buried below some cr levels in the unscaled version, could not be 
pushed up by scaling without at the same time seriously impairing the value of 
the total energy. 

The failure of scheme II may be attributed to the lack of flexibility of the static 
scaling which was employed. The L6wdin orthogonalized orbitals depend directly 
on the overlap matrix and therefore are quite different in different molecules. 
The integrals over the L6wdin basis must also, then, vary considerably and the 
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scale matrix must be capable of closely following these variations. A gross scaling 
factor for all one-center Coulomb integrals on an atom is obviously incapable 
of doing so. Perhaps in the case of a series of molecules exhibiting similar bonding, 
like the hydrocarbons, it might be possible to find a set of scaling factors that 
would give reliable results. In the general case, however, it is absolutely essential 
to have a dynamic scaling procedure. 

Such a procedure has indeed been worked out by Roby et al. I-4] using the 
S-expansion technique. The S -  1/2 matrix, appearing in the transformation of the 
integrals over the OAO basis to those over the nonorthogonal basis, is expanded 
in a binomial series. Terms involving the cubic powers of the overlap are neglected 
and the resultant expression is then simplified using Ruedenberg's approximation 
to yield the correction factors given in Eqs.(8) and (9). These do not require the 
calculation of any new repulsion integrals other than those already calculated 
for the NDDO MO calculation, although a little extra effort in organising the 
Fock matrix is necessitated. A simplified version, suitably rotationally averaged 
to be used in conjunction with the INDO method using OAO basis set, has been 
tested by Craig et al. [18] without significant improvement in their results. They 
had expressed the hope that the results may be far better if the full expressions of 
Eqs.(8) and (9) are used with the Roby NDDO method. Ours is the first attempt 
to verify this possibility. 

The results for H20 are again given in Table 1 and those for HF molecule in 
Table 3. It can be seen that the core level and some of the inner valence levels have 
registered a significant improvement in the case of water, although the ionization 
potential still remains unsatisfactory. The atomic charges show a greater degree of 
plausibility but the polarity of the bonds is not entirely satisfactory. 

The results for 03 and CO, presented in Table 2 and Table 4 respectively, are 
again distinctly superior to those of the hydrides. The orbital energies and the 
total energy compare favourably with the ab initio values. The net charges on the 
atoms still have the wrong signs although the values are somewhat better than in 
scheme I. 

Scheme III, then, at the all-electron level, while being indisputably superior 
to scheme I, remains far from being perfect. It may be expected to fare much 

T a b l e  3. R e s u l t s  f o r  H F  

O r b i t a l  ab initio d (1) a (2) b (3) c 

l a  - -26 .139  - - 2 5 . 6 8 2  - -  - -  

2or -- 1.476 -- 1.438 -- 1.512 -- 1.284 

3a  -- 0 .566 -- 0 .299 -- 0 .457 -- 0 .354 

17r -- 0 .465 -- 0 .284 -- 0 .382 -- 0 .339 

Erot .  ~ - -98 .913  - - 9 8 . 6 6 6  - 9 8 . 8 1 6  - 2 3 . 0 0 9  

P o p u l a t i o n  

o n  H y d r o g e n  - -  0.41 0.69 0.74 

a A l l - e l e c t r o n  N D D O  + O A O  sca l ing .  

b A l l - v a l e n c e  N D D O  + O A O  sca l ing .  

c A l l - v a l e n c e  N D D O  w i t h  p o i n t  c h a r g e  co re  + O A O  sca l ing .  

d Ref .  [23] .  
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T a b l e  4 .  R e s u l t s  f o r  C O  

2 5 1  

O r b i t a l  ab mi t io  d S A I  ( 1 )  a ( 2 )  b ( 3 )  c 

l e t  - 2 0 . 8 1 2  - 2 0 . 6 8 5  - 2 0 . 9 5 2  - -  - -  

2or - 1 1 . 4 4 4  - 1 1 . 4 5 7  - 1 1 . 6 7 3  

3~r - 1 . 5 3 4  - 1 . 5 7 0  - 1 . 8 8 8  - 1 . 6 2 8  - 1 . 5 0 9  

4 a  - 0 . 7 6 0  - 0 . 9 8 0  - 1 . 0 0 2  - 0 . 8 2 0  - 0 . 5 8 4  

17~ - 0 . 6 1 2  - 0 . 5 5 6  - 0 . 6 5 3  - 0 . 5 8 2  - 0 . 5 9 4  

5 a  - 0 . 5 0 7  - 0 . 6 1 7  - 0 . 6 4 8  - 0 . 6 2 0  - 0 . 4 8 1  

ETota I 1 1 2 . 3 3  - - 1 1 2 . 7 5  - - 1 1 2 . 1 1  - - 1 1 2 . 1 6  - - 2 0 . 1 5  

C h a r g e  o n  C a r b o n  - -  - -  + 0 . 9 0  + 0 . 2 9  + 0 . 1 2  

" A l l - e l e c t r o n  N D D O  + O A O  s c a l i n g .  

b A l l - v a l e n c e  N D D O  + O A O  s c a l i n g .  

A l l - v a l e n c e  N D D O  w i t h  p o i n t  c h a r g e  c o r e  + O A O  s c a l i n g .  

a R e f ,  [ 2 0 1 .  

better at the all-valence level of calculation. This is because of the fact that the 
inadequacy of the Ruedenberg expansion in providing a fair representation of an 
orbital on one center in terms of the orbitals on another atomic center is particu- 
larly severe for a core orbital which has negligible overlap with all the orbitals 
on the other center. 

That this is indeed true may be clearly seen from Tables 1-4 in which results 
of "valence-only" calculations, performed according to the method of Lykos and 
Parr [15] described earlier, have been presented. The orbital energies show 
satisfactory agreement with ab initio values while the total energy continues to 
remain good. The most gratifying improvement is in the atomic population which 
appears perfectly plausible now. Results are, of course, vastly superior in the case 
of nonhydride molecules. 

We have also included in the tables results obtained by Roby et al. [19, 20] 
using their simplified ab initio (SAI) scheme. In this ZDO method the one-electron 
integrals are evaluated over the L6wdin orthogonalized basis, as is done in the 
present case. The NDDO approximation is invoked to simplify the electron 
repulsion part. But, unlike in the present method, the surviving integrals are 
evaluated over the L6wdin basis, though only approximately. The integrals over 
the OAO basis, are expanded in terms of those over the nonorthogonal basis. 
Out of these, the usual NDDO type integrals over the non-orthogonal basis are 
evaluated exactly and the others simplified by the Ruedenberg approximation. 
This method is superior to the present scheme in that the hybrid repulsion integrals 
are also treated at the same level of accuracy as the Coulomb repulsion integrals. 
The SAI gave good results in the case of nonhydride molecules but in the case of 
hydrides it was found "suitable for application where limited numerical accuracy 
would be sufficient". 

The similarity between the results of the all-valence NDDO method with OAO 
scaling using S-expansion and those of the SAI method is striking. For the hydrides 
it should therefore prove possible to understand the gross features of electronic 
structure and to infer the main trends in the properties of a series of chemically 
related compounds, with a comparatively lesser effort. In the case of nonhydrides 
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Table 5. Results for F N O  

Orbital S A P  ab initio ~ ( 1 )  a (2 )  b 

l a  - 2 6 . 3 8 8  - 2 6 . 3 1 2  - -  - -  

2 a  - 2 0 . 6 6 3  - 2 0 . 7 9 7  - -  - -  

3 a  - 1 5 . 7 2 0  - 1 5 . 8 6 3  - -  - -  

4 a  - 1 . 5 4 t  - 1 . 6 3 4  - 1 , 6 0 7  - 1 . 5 4 8  

5 a  - 1 . 4 7 1  - 1 . 4 7 5  - 1 . 4 5 7  - 1 . 1 5 8  

6 a  - 1 . 2 0 8  - 0 . 9 0 2  - 1 . 0 7 1  - 0 . 6 9 5  

7 a  - 0 . 6 4 8  - 0 . 7 0 9  - 0 . 7 0 2  - 0 . 6 6 5  

8 a  - 0 . 5 7 5  - 0 . 6 5 2  - 0 . 6 5 5  - 0 . 5 7 0  

lb - 0 . 5 6 5  - 0 . 6 4 8  - 0 . 5 8 2  - 0 . 5 8 6  

9 a  - 0 . 5 6 0  - 0 . 4 9 6  - 0 . 4 6 9  - 0 . 4 4 7  

2 b  - 0 . 4 8 6  - 0 . 4 9 1  - 0 , 4 6 1  - 0 . 4 3 9  

1 0 a  - 0 . 4 1 2  - 0 . 3 7 4  - 0 . 3 6 6  - 0 . 3 2 2  

ETo~a ~ - - 2 2 8 . 2 4  - - 2 2 7 . 7 1  - - 2 2 6 . 7 1  - - 4 6 . 2 4  

M u l l i k e n  Populat ion 

N 6 . 9 0 4  6 . 8 8 8  6 . 9 2 5  

O 8 . 0 4 6  8 . 0 4 3  8 . 0 1 6  

F - -  9 . 0 5 0  9 , 0 6 9  9 . 0 5 8  

a All-valence N D D O  + O A O  scaling. 
b A l l - v a l e n c e  N D D O  with point charge core + O A O  scaling. 
c R e f ,  [ 2 0 ] .  

d R e f .  [ 2 4 ] .  

the method appears to be even superior to the SAI scheme: the ordering of levels 
is more exact and the dipole moment is closer to the ab initio value for ozone. 
Table 5 which contains the results for FNO emphatically establishes the truly 
impressive performance of this NDDO scheme. 

We have calculated the diagonal stretching force constant, and the equilibrium 
bond length in H20 and HF, by first minimizing the total energy of the system 
with respect to the internal displacement coordinates and then evaluating the 
curvature of the potential energy function at the calculated minimum. From the 
results in Tables 6 and 7 it may be seen that the bond lengths are overestimated 
in both cases, but the values are closer to the experimental distances than those 
calculated by the CNDO method. The force constants provide the striking proof 
of the superiority of the present NDDO scheme over CNDO and INDO methods. 

An interesting behaviour is seen in the all-valence calculations in which the core 
is treated as a point charge. In some calculations the 2s orbital on each first row 

Table 6.  

C N D O  a N D D O  b ab initio ~ E x p .  r 

O - H  Stretching 
Force Constant 
( m d y n e / A )  1 7 . 0  

Equilibrium O - - H  

Distance ( A )  1 . 0 3  

I 0 . 0  9 . 9  8 . 5  

1 . 0 0  0 . 9 4  0 . 9 6  

R e f .  [ 5 ] .  b This work. c R e f .  [ 2 5 ] .  
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Table 7. 
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CNDO" INDO ~ N D D O  b Exp. 

H - F  Stretching 
Force Constant  
(mdyne/A) 19.12 18.64 7.1 9.6 
Equilibrium H - F  
Distance (A) 1.000 1.006 0.983 0.917 

a Ref. [5]. b This work. 

atom was maintained Schmidt-orthogonal to the corresponding ls orbital on the 
atom although the ls orbital was not used in the calculation. The results obtained 
from such calculations (Table 1) resemble those of the more rigorous "all-valence" 
calculations described earlier. The only change is that the polarity of the bond is 
reduced as evidenced from the Mulliken population analysis. If the 2s orbital 
is given more freedom by restoring it the original nonorthogonality, there is a 
marked change in the total energy which has now come close to the CNDO total 
energy ( -19  a.u.) with some of the orbital energies diving deep down corre- 
spondingly. Although there is no obvious reason why the 2s orbital has to be 
orthogonalized to tlhe core when the core is treated as a point charge it appears 
from the present study that it is in fact necessary for obtaining good orbital 
energies. It of course remains to be seen whether this orthogonalization is essential 
for the calculation of other molecular properties. 

It may be concluded from the results in Table 5 that, at least in the case of 
molecules containing only first row atoms, the point charge core approximation 
does not lead to any serious error. 

There still remains room for quantitative improvement of the results obtained 
by the all-valence NDDO method, particularly with reference to the inadequacy 
of the minimum basis set of STO-3G functions used in these calculations. Any 
extension of the basis set destroys the simplicity of this scheme. The Hartree-Fock 
scaling procedure, employed by Roby in his calculations on CO [-8], appears 
quite promising in this context. Certain key integrals are evaluated over Hartree- 
Fock atomic orbitals and compared with the values over the functions employed 
in the NDDO calculations. An appropriate set of one-center Hartree-Fock 
scaling factors is thus found out which may be used in the NDDO calculations 
to reduce the errors due to the poor quality of the basis functions. Preliminary 
calculations on the first row hydrides using the scale factors calculated for STO 
functions [8], showed pronounced effects, not always for the better, of such 
scaling on the orbital energies and charge distribution. A more detailed study is 
required for evolving an optimum set of Hartree-Fock scale factors. 

In Table 8 the Coulomb repulsion integrals evaluated over the nonorthogonal 
basis and the corresponding correction factors calculated using Eqs.(8) and (9) 
are given. It may be seen that the direction of error has been correctly anticipated 
in the uniform scaling procedure. At the same time the inadequacy of the uniform 
scaling method is also evident. However, as mentioned earlier, the possibility of 



254 J, Chandrasekhar et al. 

Table 8. Coulomb integrals a for HzO in matrix form b 

2s 2px 2pr 2pz HI~ H2s 

2s 0.791 
2px 0.799 0.873 
2py 0.799 0.778 0.873 
2pz 0.799 0.778 0.778 0.873 
HI~ 0.499 0.518 0.480 0.502 0.751 
Hzs 0.499 0.518 0.480 0.502 0.341 0.751 
Corrections to Coulomb Integrals in Matrix Form 
2s 0.069 
2px 0.048 0.034 
2pr 0.038 0.014 0.0 
2pz 0.044 0.020 0.008 0.021 
Has -0.034 -0.030 -0.030 -0.031 0.062 
H2, -0.034 -0.030 -0.030 -0.031 -0.045 0.061 

a In a.u. b The 7~jth element corresponds to the integral (ii/jj); ?ij = 7j~. 

arriving at a set of uniform scale factors to improve scheme I at the all-valence 
level, for a series of related molecules, cannot be ruled out. 

5. Summary 

From the present study a highly promising procedure for performing an 
approximate MO calculation capable of treating a variety of problems of chemical 
interest has emerged. In this all-valence scheme, the one-electron integrals are 
evaluated exactly over the L6wdin symmetry orthogonalised basis. The electron 
repulsion integrals are evaluated over the nonorthogonal basis and simplified 
further by making the N D D O  approximation. Corrections are made for one-center 
and two-center Coulomb repulsion integrals using the S-expansion technique 
correct through second-order in overlap. The total energy, orbital energies and 
charge distributions, as evidenced from population analyses and expectation 
values of some one-electron operators are all in satisfactory agreement with 
ab init io results. In the case of hydrides the results are of  limited accuracy, though 
remaining useful, while for the nonhydrides there is little difference between the 
approximate scheme and full SCF calculations. It is pleasing to note that no 
disposable parameter whatsoever is needed in this scheme. 

This method requires more effort than some of the popular semiempirical 
methods like the CNDO, but it should be applicable to a wider range of compounds 
with a higher expectancy of success. Unlike in the CNDO or INDO methods no 
rotational averaging of repulsion integrals, at the expense of information about 
the directional properties of  orbitals, is done and hence this method should be 
able to handle the problem of electronic structure in molecules possessing one or 
more lone pairs, like the carbanions [21] and also in molecules in which d orbitals 
play a vital role in bonding. 

Certain repulsion integrals of the form (sAp~AIsBpxB),  which during internal 
rotation make crucial contributions to the energy changes, due to dipole-dipole 
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interaction [22] are retained in this method. The present NDDO scheme should 
therefore prove useflal in studying problems in conformational analysis. 

By not succumbing to the temptation of making compensating errors in the 
one-electron part of the Fock matrix to obviate those produced in the two electron 
part by the N D D O  approximation, the gradient characteristics of the resultant 
energy functional have been preserved. We may expect the solution of the approxi- 
mate scheme to behave much like that of the Hartree-Fock solution under per- 
turbations and hence to yield reliable values for second order properties like force 
constants, chemical shifts, susceptibility etc. 

The general trends, at least, in some of the interesting properties like the 
electric field gradient, isotropic and dipolar hyperfine coupling constants in free 
radicals etc. should be predicted correctly by this fully nonempirical method since 
almost all of the integrals which make the chief contributions to these quantities 
are retained in the calculations. 

Calculations are well under way to verify all these expectations and the results 
will be reported in forthcoming papers. 
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